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We have calculated static and dynamic response properties for several semiconducting and insulating solids
using hybrid functionals, which admix a small fraction of nonlocal Fock exchange to an otherwise semilocal
density functional. The calculated static and dynamic properties are clearly improved compared to conven-
tional semilocal density functionals; in particular the oscillator strength at low energy excitations is well
described.
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The accurate calculation of optical-absorption spectra is a
long-standing challenge to computational physics. Although
the GW approximation followed by a subsequent solution of
the Bethe-Salpeter equation �BSE� is now routine, only very
few absorption spectra have been published to date, one rea-
son being that the approach is rather involved since it re-
quires the diagonalization of a large two-particle matrix.1

Combined with the slow k-point convergence of optical
spectra, calculations are time consuming even by today’s
standards. Kohn-Sham density-functional theory �KS-DFT�
on the other hand—which in its time-dependent formulation2

is, at least in principle, applicable to the calculation of ab-
sorption spectra—is well known for its underestimation of
band gaps. As a result the absorption spectra calculated using
standard local or semilocal functionals are unsatisfactory,
significantly redshifted, and lack typical excitonic features.
This is related to the absence of an attractive electron-hole
term in the present semilocal exchange-correlation function-
als. Remedies for some aspects of these problems have been
suggested, among them orbital-dependent density
functionals,3 such as the exact-exchange optimized effective
potential method.4 An approach that has recently attracted
considerable interest is hybrid functionals mixing typically
25% of the nonlocal Hartree-Fock exchange term to the oth-
erwise semilocal functional.5–7 Although very successful for
molecules, their application to extended systems has been
rather limited until the recent suggestion of Heyd et al.8 to
use a screened exchange term. This allows for a more effi-
cient treatment of large molecules and periodic systems,
since the nonlocal part of the exchange becomes fairly short
ranged.9,10 Remarkably, this hybrid functional yields truly
impressive band gaps, which are often close to the band gaps
calculated using the GW method.11,12 The question arises
whether these improvements carry over to the description of
optical-absorption spectra and related properties such as the
static dielectric constants, which are notoriously overesti-
mated using semilocal functionals.13 The main achievement
of the present work is to show that hybrid functionals indeed
substantially improve the description of static and dynamic
screening properties.

The key property of the HSE �Heyd, Scuseria, Ernzerhof�
functional is the separation of the exchange energy into a
short-range nonlocal and orbital-dependent exchange term
Ex−nl

SR and the remainder treated by a semilocal
approximation8,14

Ex
HSE = Ex-l

PBE − 1/4Ex-l
SR,PBE��� + 1/4Ex-nl

SR ��� . �1�

Ex-l
PBE is the exchange energy of the PBE �Perdew, Burke,

Ernzerhof� functional,15 and Ex-l
SR,PBE��� is the semilocal den-

sity functional corresponding to Ex-nl
SR ���. The resulting one-

electron equation contains 1/4 of a Hartree-Fock-type term,
and the functional thus belongs to the class of generalized
Kohn-Sham functionals.16 The parameter � is empirically set
to 0.2–0.3 Å−1 in the nonlocal and semilocal part, and it
defines a length scale for the separation. Note that the inter-
action range �2 /��10 Å� is typically over a few nearest
neighbors and, therefore, only short ranged compared to the
bare Fock exchange potential. In the present work, we have
used �=0.3 Å−1 except when otherwise noted.

To determine the static and dynamic dielectric functions
we first calculate the occupied and a few virtual unoccupied
orbitals �one-electron states� using the HSE functional and
the plane-wave projector augmented wave �PAW� code
VASP.17 For the evaluation of the dielectric matrices we es-
sentially use time-dependent generalized Kohn-Sham
density-functional theory �TD-DFT� in its linear-response
formulation, where the full polarizability � is given by the
usual Dyson equation

� = �1 − �0�v + fxc��−1�0

= �0 + �0�v + fxc��0 + �0�v + fxc��0�v + fxc��0 + . . . .

�2�

The matrix �0 is the independent-particle polarizability and v
the Coulomb kernel 1 / �r−r��. In the second line, we have
written the inverse as a geometrical series, which casts the
Dyson equation in a simple transparent form: The difference
between � and �0 is the inclusion of the response of the
electrons to the induced changes in the potential �v+ fxc��0
and a summation of these diagrams up to infinity. We note
that �0 and � are frequency-dependent matrices that are ex-
panded in a plane-wave basis set in the present
implementation.18 For local adiabatic functionals, the kernel
fxc is simply the second variation in the exchange-correlation
energy with respect to the density

fxc-l�r,r�� = ��r − r��
�2Exc-l�n�r��
�n�r��n�r��

. �3�

Due to the locality of this term, it lacks any electrostatic
interactions between electrons and holes. To include the ef-
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fective exchange-correlation kernel from the nonlocal ex-
change term we follow the recent suggestions of Reining and
co-workers19–22 and recast the exact four-orbital electron-
hole interactions deriving from the nonlocal exchange term
into an effective nonlocal frequency-dependent kernel fx-nl,
defined through �nanoquanta kernel�

fx-nl = �0
−1T�0

−1 ↔ �0fx-nl�0 = T . �4�

The matrix T describes how the local electronic charge den-
sity changes upon changes in the nonlocal exchange poten-
tial induced by an external local potential. In other words,
the response function T�r� ,r ,�� captures the following pro-
cess: change in external potential at r→ linear response of
orbitals → change in nonlocal exchange potential → linear
response of orbitals, and resultant charge density change at
r�. Note that the equivalent terms for the Hartree potential
and the local exchange-correlation potential have been ac-
counted for by the term �0�v+ fxc-l��0 in Eq. �2�. It is
straightforward to derive explicit expressions for the matrix
T, and the results have been published in a series of recent
papers.19–22 Since the calculation of the T matrix remains a
rather time-consuming task involving the summation over
millions of two-particle interactions, we neglect the fre-
quency dependence of fx-nl and determine it only once at zero
frequency. We also include the two-electron terms related to
the coupling between resonant and antiresonant parts of the
excitation.1,23

An alternative well established approach to calculate
frequency-dependent response functions for density or hy-
brid functionals is to solve Casida’s equation.24 The corre-
sponding matrix equation in a four-point formulation is es-
sentially equivalent to the well-known Bethe-Salpeter
equation, with the screened interaction W replaced with one-
quarter of the nonlocal screened exchange term with a fixed
screening length �. We note that this analogy immediately
suggests that excitonic effects are approximately captured by
hybrid functionals. Due to the time-consuming diagonaliza-
tion of the two-particle electron-hole problem, we found this
approach to be more expensive than the TD-DFT method,
but emphasize that, for coarse k-point grids, both methods
yield practically identical results in agreement with previous
work.21

In Fig. 1 we show the imaginary part of the head of the
test-charge test-charge dielectric function �= �1+v��−1 for
Si, GaAs, SiC, and C calculated using Eq. �2� and compare
with experimental absorption spectra. Also shown are
the results for the independent-particle approximation
�IP=1+v�0, where many-electron effects have been entirely
neglected. For the present calculations 32�32�32 k points
and eight empty orbitals were used, except for the weakly
screened materials ZnO and LiF, where 36 empty orbitals
had to be used in order to obtain sufficiently converged re-
sults. Since a straightforward calculation would be too ex-
pensive in the HSE case, we have performed the calculations
summing over many shifted 8�8�8 grids, where the shifts
were systematically varied to mimic the larger grid. For the
independent-particle approximation the results are essentially
exact, but for the full TD-HSE case the nonlocal exchange
kernel fx-nl is limited, in each direction, to an interaction

range of eight unit cells. This is expected to be accurate since
the interaction range of the HSE functional is anyway re-
stricted.

In the independent-particle approximation �dashed line�
the results are similar to those reported in literature for a
scissor corrected DFT approach. Most notably at low ener-
gies the cross sections are much too weak, e.g., for Si the
first peak is only visible as a flat plateau. Inclusion of many-
body effects via fx-nl causes a redshift of the spectrum and a
pronounced increase in the cross section at low energies,
improving agreement with experiment �red �dark gray� line�.
For Si, using a reduced screening parameter of 0.20 Å−1,
i.e., extending the range of the nonlocal exchange part of the
HSE functional, increases the cross section of the first peak
further but sacrifices the excellent position of the HSE spec-
trum �blue �light gray� line in Fig. 1�. Obviously, the inter-
action range of the HSE functional is slightly too short in
order to correctly account for the electrostatic interaction in
the weakly bound electron-hole pairs in bulk silicon. For
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FIG. 1. �Color online� Optical-absorption spectra for Si, GaAs,
SiC, C, and LiF using TD-HSE ��=0.3 Å−1� in the independent-
particle approximation �dashed black line� and including electron-
hole interactions �full red �dark gray� line�. TD-HSE06 results
��=0.2 Å−1� are shown using the blue �light gray� line, and experi-
ments are shown by dots �Si �Ref. 25�, GaAs �Ref. 26�, SiC �Ref.
27�, C �Ref. 28�, and LiF �Ref. 29��.
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GaAs, a screening parameter of 0.20 instead of 0.30 Å−1

improves both the onset as well as shape of the absorption
spectrum compared to experiment �blue �light gray� line in
Fig. 1�. For SiC and C results agree also well with experi-
ment. But for LiF, a large gap insulator with very weak
screening, agreement with experiment remains modest, with
much too weak excitonic peaks at low frequencies.

The calculations suggest that the HSE functional approxi-
mates the electrostatic interaction between a hole with the
charge density �h and an electron with the charge density �e
reasonably well. In the BSE, this electrostatic interaction is
given by a term proportional to

� �h�r�W�r,r���e�r��d3rd3r�, �5�

where W	�−1v. The main achievement of the HSE func-
tional is to approximate W reasonably well for semiconduc-
tors. For strongly localized excitons, typically found in large
gap insulators, the HSE functional will approximate W by a
quarter of the bare Coulomb kernel v, which is necessarily
insufficient: in LiF � is roughly 2 �see Table I�, and at least
half of the Coulomb kernel is required to approximate W. For
more dispersed excitations, the long-range cutoff used in the
HSE functional will become progressively more important,
further reducing the amount of nonlocal exchange, and for
excitations relevant to semiconductors, a cutoff around
��0.2–0.3 Å−1 mimics the exact W quite well. But cer-
tainly no a priori choice of � and no choice for the nonlocal
exchange can describe all systems equally well.

We now turn to the static dielectric constants for selected
semiconducting and insulating systems reported in Table I.
For comparison, we present the corresponding local-density
approximation �LDA� values obtained using density-

functional perturbation theory �linear response�,35 as well as
HSE results obtained by applying a finite field and extracting
the polarizability from the change in the polarization.30,31 It
is immediately recognized that the LDA calculations overes-
timate the screening in the independent-particle approxima-
tion ��IP�. The inclusion of the local-field effects via v+ fxc in
Eq. �2� results in a slight reduction in the screening, which is
related to the repulsive effect of the Hartree kernel v partly
compensated by the attractive local exchange-correlation
kernel fxc-l.

For HSE, the dielectric constant is too small for the IP
case, and only inclusion of v+ fxc-l+ fx-nl in Eq. �2� yields
good agreement with experiment. This is of course related to
the strong redshift of the absorption spectra and the increase
in the intensity at low frequencies from the independent-
particle case to the full calculation �see Fig. 1�. Although, the
dielectric constants remain somewhat too small, the average
deviation between theory and experiment has decreased from
10% �LDA� to roughly 3% �HSE�. Eventually, these results
also show that the exact finite field approach and the TD-
HSE approach, which involves a summation over a truncated
number of virtual orbitals, yield de facto identical results.
This validates our implementation and confirms that conver-
gence of the TD-HSE results has been achieved.

It has been suggested that generalized Kohn-Sham func-
tionals might be a good starting point for GW calculations.36

But the strong excitonic effects we observe in the present
work require one to take the next step with care. In the GW
approximation W is usually constructed including the Cou-
lomb kernel v only, neglecting fxc in Eq. �2�. This so-called
random-phase approximation �RPA� is problematic for the
HSE case since it results in a quite severe underestimation of
the static screening. This suggests that GW calculations start-
ing from a hybrid functional should include fxc, which is
usually done via vertex corrections.22 This is clearly con-
firmed in Table II, where we show that straightforward GW0

TABLE I. Ion clamped �high frequency� macroscopic dielectric
constants �
 from TD-DFT using the LDA and the HSE
��=0.3 Å−1� hybrid functional in the independent-particle approxi-
mation ��IP


 � and including all electron-electron interactions. The
HSE results have been obtained either by solving the Dyson equa-
tion or by applying a finite field and extracting the response from
the change in the polarization �Refs. 30 and 31�. For ZnO the di-
electric constants are reported for the wurtzite structure along the a
and c axes. All data are calculated at the experimental volumes.

LDA HSE HSE fin. field

Expt.�IP

 �
 �IP


 �
 �IP

 �


Si 14.1 13.35 10.94 11.31 10.87 11.37 11.9a

GaAs 14.81 13.98 10.64 10.95 10.54 11.02 11.1a

AlP 9.12 8.30 7.27 7.35 7.32 7.35 7.54a

SiC 7.29 6.96 6.17 6.43 6.15 6.44 6.52a

C 5.94 5.80 5.21 5.56 5.25 5.59 5.7a

ZnO c 5.31 5.15 3.50 3.71 3.57 3.77 3.78b

ZnO a 5.28 5.11 3.48 3.67 3.54 3.72 3.70b

LiF 2.06 2.02 1.85 1.90 1.86 1.91 1.9c

aReference 32.
bReference 33.
cReference 34.

TABLE II. Band gaps for GW0 calculations without �RPA� and
with attractive electron-hole interaction �vertex corrections in W
only, i.e., GW0

TC-TC�. Eigenvalues were updated in G until conver-
gence was reached, whereas W was calculated using HSE wave
functions and eigenvalues. Details and experimental values are
identical to Ref. 37 and references therein.

HSE GW0
RPA36 GW0

TC-TC Expt.

Si 1.04 1.37 1.25 1.17

GaAs 1.12 1.72 1.57 1.52

SiC 2.03 2.68 2.41 2.40

CdS 1.97 2.62 2.37 2.42

AlP 2.09 2.79 2.60 2.45

GaN 2.66 3.42 3.09 3.20

ZnO 2.12 3.07 2.55 3.44

ZnS 3.06 3.83 3.50 3.91

C 5.07 5.92 5.65 5.48

BN 5.54 6.70 6.31 6.1–6.4

MgO 6.19 8.13 7.60 7.83

LiF 11.22 14.75 14.01 14.20
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band-gap calculations starting from a HSE functional tend to
overestimate the band gaps, and only the inclusion of fx-nl in
the calculation of � rectifies the problem. A similar observa-
tion is made for self-consistent GW calculations.37 The
present calculations only fail for systems with shallow d
electrons, but here the GW approximation seems to suffer
from fairly large self-interaction errors for local d
electrons.37

In summary, we have reported the calculation of static and
dynamic screening properties of extended systems using hy-
brid functionals. Apart from a better prediction of the precise

position of the peaks in the absorption spectra, the hybrid
functional also describes the scattering cross sections in the
low energy region reasonably well. Even the static dielectric
constants, which are profound ground-state properties, are
better captured by the HSE functional. In general, the work
confirms that hybrid functionals yield results superior to
semilocal functionals for semiconductors and small gap in-
sulators, but we have also shown that such functionals in-
volve compromises �screening length� and are not truly as
predictive as GW. Large gap insulators are for instance not as
well described as using GW.
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